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On the dynamics of approximating

schemes for dissipative nonlinear equations

By Don A. Jones

I. Motivation and objectives

Since one can rarely write down the analytical solutions to nonlinear dissipative

partial differential equations (PDEs), it is important to understand whether, and in

what sense, the behavior of approximating schemes to these equations reflects the

true dynamics of the original equations. Further, because standard error estimates

between approximations of the true solutions coming from spectral methods--finite

difference or finite element schemes, for example--and the exact solutions grow

exponentially in time, this analysis provides little value in understanding the infinite
time behavior of a given approximating scheme.

The notion of the global attractor has been useful in quantifying the infinite time

behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speak-

ing, the global attractor is all that remains of a sufficiently large bounded set in

phase space mapped infinitely forward in time under the evolution of the PDE.

Though the attractor has been shown to have some nice properties--it is compact,

connected, and finite dimensional, for example--it is in general quite complicated.

Nevertheless, the global attractor gives a way to understand how the (infinite

time) behavior of approximating schemes such as the ones coming from a finite

difference, finite element, or spectral method relates to that of the original PDE.

Indeed, one can often show that such approximations also have a global attractor.
We therefore only need to understand how the structure of the attractor for tile

PDE behaves under approximation. This is by no means a trivial task. Several

interesting results have been obtained in this direction. However, we will not go

into the details. We mention here that approximations generally lose information

about the system no matter how accurate they are. There are examples that show

certain parts of the attractor may be lost by arbitrary small perturbations of the

original equations (see Humphries, Jones, Stuart, 1993, and the references therein

for a description of some of the results).

Under certain hypothesis on the approximation, one can be guaranteed some

structures of the attractor survive the approximation. For example, consider the
ordinary differential equation (ODE)

dx

d--[ = X(x), (1)

where we suppose that x E/R n and that X is a C 1 function. Further, we suppose

that the system (1) is dissipative and hence has a global attractor. Now suppose
that (1) is approximated by

dy
d--/= X(u) + Y(u), (2)
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where y E g/" and Y is a C 1 function. Suppose further that

IIYIIc,

for some suitable e > 0. That is, (1) and (2) may be viewed as small C 1 per-

turbations of one another. This seems to be a natural condition to require of a

perturbation in order to say something about how the global attractor of (2) relates
to that of (1). Indeed, such systems have been studied by several authors and in-

creasingly stronger results have been obtained (see e.g. Pliss & Sell, 1992, and the
references therein). It is known, for example, that normally hyperbolic, invariant

manifolds persist under such perturbations.
In order to apply these results to PDEs, one must first construct finite systems

of ODEs that have the same global attractor as the infinite-dimensional PDE. This

has been done for several dissipative PDEs including, for example, the Kuramoto-

Sivashinsky equation, Cahn-HiUiard equation, Ginzburg-Landau, certain reaction-
diffusion equations, and the Navier-Stokes equations, Kwak, 1991. Such systems

are called inertial forms.
To be more specific, each of these PDEs can be viewed as an ordinary differential

equation on a suitably chosen Hilbert space, H. We denote by (., .) the inner product

and I" [ the norm on H. Then these equations take the form

dt + Au + R(u) = f (3)

u(0) =

Typically, the operator Au is -V 2 with Dirichlet or periodic boundary conditions.
For the Navier-Stokes equations, for example, the term R(u) is the divergence free

part of (u. V)u (see Temam 1988).
In all cases but the Navier-Stokes equations, the existence of inertial forms (IF)

has been proven by showing the existence of an Inertial Manifold. To date, inertial
manifolds have been constructed as a graph in phase space of a Lipschitz function

(see Foias, Sell, Temam, 1988). An inertial manifold (IM) for a dissipative evo-
lution partial differential equation is a smooth finite-dimensional manifold in phase

space, which is positively invariant under the solution operator and which uniformly
attracts every bounded subset of phase space at an exponential rate. It is clear that

if the IM exists, then it must contain the global attractor. Moreover, the reduction

of the partial differential equation to the IM yields the inertial form.
We denote by P the orthogonal projection of the space H onto the span of the

first M eigenfunctions of A, and Q = I - P. We set p = Pu, q = Qu. Then the

evolution equation (3) is equivalent to the system

dp
d'-t + Ap + PR(p + q) = P f,

dq
d-t + Aq + QR(p + q) = Qf.
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If the IM is given as a graph of a Lipschitz function q_ : PH _-* QD(A) for

M sufficiently large, then on this manifold the solutions of (3) are of the form

u(t) = p(t) + ¢_(p(t)). Moreover, in this case, the inertial form is given by

d,
-_ + Ap + PR(p + _(p)) = Pf p E PH.
dt (4)

Equation (4) does not have the same solutions as Equation (3) (only on M).

Rather, it has the same infinite time behavior as original PDE. Most importantly,

it is an ODE. In view of the work of Pliss & Sell (1992) mentioned above, there is

an advantage in approximating (4) in the C 1 sense. A candidate for such a system
is

dp + Ap + PR(p + _app(p)) = Pf p E PH, (5)
dt

with

sup (IA(¢app(p) - _(p))[ + HA(DCapp(P) - D_(p))IIL(PH,QH>) <__,
pEPH

and where D_ denotes the Frdchet derivative of the function _. In this case, under

reasonable assumptions on R, the vector field in the approximate inertial form (5)

may be viewed as a small C 1 perturbation of the vector field in the inertial form

(4).

2. Accomplishments

The main goal of this method of reduction is to implement the reduced ordinary

differential system (5) in long-time simulations of solutions to the PDE, (3). Even

in the case that the IM or a smooth function _ does not exist, the theory suggests

looking for a global function _app whose graph in phase space approximates the

attractor. Indeed, many ¢app have been constructed. These approximations have

been implemented in numerical schemes for a variety of equations and settings

(see Jones, Margolin, Titi, 1993, and the references therein). We will discuss the
effectiveness of these schemes below.

Perhaps the most important role the IF, Equation (4), can play, as mentioned

above, is to understand how the dynamics of approximating schemes relates to that

of the original PDE. The first attempt at approximating ¢I' in the C 1 sense was

in Jones, Titi, 1993. There, _ was viewed as the asymptotically stable stationary

solution of a certain PDE. One can then approximate _ by integrating this PDE
forward for a short time.

However, the situation may be much simpler than this. Consider the spectral

approximation of (3) based on the eigenfunction of the linear operator A. One

obtains the approximation

dun

d----t A- AUN + PNR(UN) = PNf (G)
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with initial data uN(O) = uo,N. As shown in Foias, Sell, Temam, 1988, and Foias,

Sell, Titi, 1988, if N is chosen sufficiently large, there exists a global function

ON such that MN =Graph(ON) is an inertial mar, ifold for (6). On this manifold,
solutions are of the form uN(t) = pN(t)+ON(PN(t)) with pN(t) = PuN(t). Further,

on this manifold, (6) reduces to

dp_____NN+ ApN + PR(pN + ON(PN(t))) = P f, (7)
dt

where P is defined above. Notice also that Equation (7) remains of dimension M,

the same dimension as (4), as N --* o¢. Again, it is not that (7) has the same

solutions as (6) (only on MN), but rather it has the same global attractor as (6)

(since the IM contains the attractor).
Now Equation (7) will play the role of the approximate inertial form, Equation

(4). That is, we take O,pp = ON. Moreover, it was shown in these two papers that

C

sup IA(O(p) - ON(p)I <_ A__------_pePH

for some 0 < fl < 1/2 which depends on the nonlinear term R. However, more is

true.

Theorem Suppose that M is so large (determined by the spectral properties of A)

that O, ON as described above ezist. Then for all e > 0 there ezists a N(e) such that

sup [IA(O(p) - ON(P))I + IIA(DO(P) - DON(P))IlCOV_,_I <- e
pEPH

for all N > N(e).
Proof. See Jones, Titi (1993).

The IF, Equation (4), has the same dynamics as the original PDE. Moreover,
the above shows that the spectral method based on the eigenfunctions of A is a

small C 1 perturbation of the IF for N sufficiently large, since Equation (6) and (7)
have the same attractor. Thus, this spectral method preserves certain structures of

the attractor of the PDE, for example, the ones studied in Pliss, Sell, 1991, for N

sufficiently large.
A similar type of analysis may be possible for finite element methods. To do this

properly, we should turn to a specific PDE. However, we will attempt to keep the
exposition as general as possible. We denote by {Vh}a>0 a finite dimensional sub-

space of differentiable functions (most typically piecewise linear functions), where
one can think of h as being the maximum partition size. Then one attempts to

approximate solutions u(t) of (3) by functions uh(t) in V h. The functions u h solve

(uth, X) + (A*/2uh,A'/2X) + (R(uh),X) = (f,X) (8)

uh(0) = u0h e y _,
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where one can think of A 1/2 as d/dx in the 1D case.

The operator A h can be defined from the equation (Ah¢, X) = (A1/2¢, A1/2X).

Further, projecting R and f onto the space V h, Equation (8) takes the form

du h

+ Ahu h + Rh(uh) = fh. (9)

Since A is assumed to be self-adjoint, A h is also. Moreover, the spectrum of A h

can be shown to approximate that of A. Thus, the space V h may be decomposed

V h = phvh _ QhVh. In the same manner that the ON was constructed in Foias,

Sell, Titi, 1988, a global function O h may be constructed for Equation (9) (see Jones,

Stuart, 1993, for the details) such that M h =Graph(q_h) is an inertial manifold for

(9). On this manifold, solutions are of the form uh(t) = ph(t) + _h(ph(t)) ' where
ph = phuh" On the IM, (9) reduces to

dP h Ah ph
d---t-+ + phRh(ph + Oh(ph)) = ph f (10)

for h sufficiently small. As in the case of the spectral method, the dynamics of (10)

are the same as that of (9). Moreover, the dimension of (10) remains fixed (roughly

on the order of M) as h ---* 0. One would like to show C 1 closeness of (10) and (4).
However, at this point all we have is the following

Theorem For h sufficiently small there ezists a function Oh such that (10) holds.
Moreover,

(i) for any p E PH there exists C(p) > 0 such that

II(P + ¢_(P)) - (php + ¢_h(php))l I < C(p)h;

(ii) for any ph e Phil there exists C(p h) > 0 such that

ii(p p, + ¢(pph)) _ (ph + _h(p,))ll < C(ph)h.

Proof. See Jones, Stuart (1993).

On the Practical Side

The above theory suggests that there may be an advantage in enslaving the high

Fourier modes (in the case of the spectral method based on the eigenfunctions

of A) in terms of the lower modes through the function ¢I'app. Shortly after the

discovery of the IF, Equation (4), many _app were constructed and studied for

various equations (see Jones, Margolin, Titi, 1993, and the references therein),
including the Navier-Stokes equations (see for example Jolly, 1993). Schemes based

on enslaving q ,_ Capp(p) are generally referred to as nonlinear Galerkin methods
since ¢app = 0 gives the standard Galerkin scheme.
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In Jones, Margohn, Titi, 1993, we evaluate the effectiveness of the nonlinear

Galerkin method in the context of spectral method (such schemes have now been

constructed for finite element and finite difference schemes; see the references in

Jones it et al. 1993). The goal of this work is to understand under what conditions

the nonhnear Galerkin methods lead to a significant improvement in accuracy over

the standard Galerkin method from a purely numerical analysis point of view.
Recall that in general, if one approximates a smooth function u with respect

to some basis, the rate of convergence is limited by the smoothness of the basis

functions. If the basis elements are C °_ functions as in the case of the eigenfunctions

of the linear operator A, the rate of convergence is only limited by the smoothness

of u and compatibility of the function u with the basis elements of the expansion

at the boundary (the presence of Gibb's phenomenon, for example).
Thus, if the solutions u(t) of equation (3) are very regular and compatible with

the eigenfunctions {_oj } of A at the boundary, then the Fourier coefficients of the
solution may decay very rapidly in wave number. Indeed, Foias, Temam, 1989,
showed that, under such circumstances, solutions of the Navier-Stokes equation may

decay exponentially in Fourier space. Similar results hold for the other equations
mentioned above. Thus, the business of trying to approximate the q part of solutions

via the function @app may not be effective when the q = Qu part of the solutions

is exponentially small. That is, the approximation _app = 0, which leads to the
standard Galerkin scheme, may already be good enough. It turns out that what

controls the regularity and compatibility of solutions coming from the NSE and

related equations is the compatibility with the basis functions and regularity of the

forcing term f.
We demonstrate this for the Kuramoto-Sivashinsky equation (KS). A similar

analysis holds for the NSE. This equation is given by

Ou 0% 02u Oa
+ + + = f(x)

u(0, x) = u0(x)

u(t,x) = u(t,x + L) L > O, t > O.

The KS equations appears in physics literature with f = 0. Here we have added an
additional feature to the KS equation, namely, a forcing term jr. We will use this

forcing term to control the level of regularity of the solutions to the KS equation.
It is clear that whenever f(x) is an odd function then the space of odd functions is

invariant under the solution operator for the KS equation. For simplicity, we will
restrict ourselves to the odd case. Hence, under these assumptions, one can easily

show that the KS equation is equivalent to the evolution equation

du

d-'t + Au - A1/2u + B(u,u) = f,

u(0) =
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on the Hilbert space H = {u E L2((0, L))lu(x ) = u(x + L), u(x) = -u(L - x), x •
a 4

_}. Here A = 0--_x;the eigenvalues of A are Am = (2ran�L) 4 corresponding to the
eigenfunctions _m = sin(27rmx/L), for m = 1, 2, ....

In either case, one can define the operators A a for a > 0. One defines D(A c') =
{u_Hu- oo u- • oo _. _ - . .

I - _j=x ,_,,E5=a Ai Nil < _o}. Consequently, functions m D(A")
are more regular, and more compatible (whenever it applies) with the eigenfunctions
of A at the boundary, for larger a.

We may then approximate solutions of the KS equation with either the standard
Galerkin scheme

dyn
d-T + Ayn + AU2y. + PnB(yn,y.) = Pnf (11)

or by the nonlinear Galerkin method

dzn

d---t"+ Azn + A1/2z n + PnB(zn + Oapp(Zn), Zn + ¢app(Z,)) = Pnf (12)

for some clever choice for Oapp.

As mentioned, the rate of convergence of the two schemes is tied to the smoothness

of the solutions and compatibility of the solutions with the basis functions. (Since we

are considering the KS equation with periodic boundary conditions, compatibility
of the solutions is not an issue here. However, such cases are studied in Jones,

Margolin, Titi, 1993.) This is, in turn, tied to the smoothness and compatibility
of the forcing term f. The rates of convergence of the two schemes is given by the

following two theorems which is based on the work of Devulder, Marion, Titi, 1993,
and whose proofs can be found in Jones, Margolin, Till, 1993.

Theorem Let u(t) = p(t) + q(t) be a solution of the KS equation with Uo on the

attractor and f E D(A_). Suppose yn solves (11) with yn(O) = Pnu(O). Then

IN(t)- W(t)IIL2 <_ Cl(t_____)
Al+a •

n+l

In general, requiring f E D(A _) for some a > 0 requires not only that f be

smooth, but also that f and its derivatives up to order 4a must satisfy the boundary
conditions. Now we suppose that O_rp satisfies certain conditions described in

Jones, Margolin, Titi, 1993--such O,pp abound. For the nonlinear Galerkin method,
we have

Theorem Let u(t) be as in the previous theorem. Suppose z, solves (12) with
z,(0) = P,u(O). Then

IN(t) - (z.(t) + O.pp(z.(t)))]JL_ < C_(t)
-- _+a '

"'n+l
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for some fl > 1.

For most _app,/_ is not larger than two. Now one can see the issue here. As f

becomes more smooth, larger a, the difference in the theoretical rates of convergence

of the two schemes decreases.
Let us push the smoothness of the solutions to an extreme. Consider the forced

KS equation and suppose that for some a > 0, f E D(e ¢A_/4 ); that is, f is in a

Gevrey class (real analytic). Notice that

lie_A_/'fll_2 = _ e2_j Ifil 2 < _'
j=l

where f = ]_'_T=t fjqPj. Under these assumptions for the forced KS equation, we
have (Proposition 3.6 of Jones, Margolin, Titi, 1993) that the Fourier expansion
of the solution converges exponentially fast. This means that the solutions are

infinitely compatible with the basis functions at the boundary and analytic inside

the domain. Hence, the high Fourier modes of the solutions have exponentially

small norms, and there may be little advantage in approximating them. Indeed, in

this case, we have

Ilu(t)-Um(_)ilL2 -<Cl(t) e _+1 '

where y,, solves the Galerkin scheme (11)
As in the above theorem, we have

Ilu(t) - (zm(t) + ,_..pp(z,=(t)))llL=<-C2(t) e

_t/4

--ffl am+ 1

A_m+1 '

where zm is the solution of the nonlinear Galerkin scheme (12).

Thus, in the case that the solutions have Gevrey class regularity (spatially real

analytic), the nonlinear Galerkin method only leaxis to algebraic improvements in

the upper bounds of the rates of convergence over the standard Galerkin scheme.
This little improvement might not be significant in computations. Of course, the

overall improvement depends on how small the constant al is.
We demonstrate this numerically. We choose ¢,pp to be

¢,(p) = A-1Qm(f - B(p,p)),

which we first studied for the NSE in Foias, Manley, Temam, 1988. For this choice,

fl = 7/4. For our first example, we force the KS equation with

: =E sin0,)-7

)=1 3
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Notice that for this choice f E D(A _) for a < 1/8.

We have found a stable periodic orbit with this forcing. Such trajectories are on

the attractor. To obtain the "exact" periodic solution, we run a Galerkin scheme

using 100 modes; when we reach .5 time units, we start recording the data every
.002 time units up to a time of .7 time units (Figure 1). If the initial data is taken

near the periodic orbit, it will take some .4 time units to converge to the periodic

solution. Since the periodic solution is on the attractor, we expect that the rate of
convergence in this case to be of the form

Egat = max llu(t)-ym(t)HL2 < c_
.s_<t_<.r '_Am+1

of course, here we are ignoring errors due to the discretization of time. Also

C2

E1 = max Ilk(t) - (Zm(t) + R.  (Zm(t)))llL2 < ---7.5<t<.7 -- •
_ _ Am+ 1

Since in this case Am = m 4, we have

log Eg,t = cl - 4al log(m + 1),

and

logEl = c2 -4a2 log(m + 1).

Thus, a log-log plot of the error in terms of the wave number will easily determine

the rate of convergence. In Figure 2, we have plotted the rate of change of the graph

of the log-log plot of the error in terms of wave number. The theory suggests that

the rate of convergence for the Galerkin method al is less than or almost equal to

9/8 and for the nonlinear Galerkin method a2 is less than or almost equal to 15/8.

The results plotted in Figure 2 show that the Galerkin calculation asymptotes at a

value of 1.1, whereas the nonlinear Gaierkin asymptotes at a value of 1.92, which is
in a good agreement with the theory.

Now we turn to the case when the force is in the Gevrey class (real analytic).

We consider the KS equation with zero forcing. With the help of the software

package AUTO, we start the calculation with initial data on the unstable manifold

of a periodic orbit, which again is on the attractor. The solution converges to a

steady state as time goes to infinity. Thus, this trajectory is contained in the global

attractor, and the theory presented in Section 3 holds for this trajectory. We first
compute this trajectory using 100 Fourier modes, which we will consider as our

"exact" solution. The L 2 norm of this solution vs. time is shown in Figure 3. We

integrate this trajectory out to 1.3 time units and record the solution every .01 time
units.

We expect from the theory outlined in Section 3 that

.1/4
C 1 _--al'am+l

Eg=t := Ilu(t)- ym(t)llL= <
o_<t_<1.3
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FIGURE 1. L 2 norm of the solution vs. time for the KS eq. of a Galerkin scheme

with 100 modes forced with / = __,_=J 1/j sin(jx).
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FIGURE 2. Rate of change of the log of the accuracyxl011 vs. log of the number

of modes. The Galerkin asymptotes at 4.4 and the nonlinear Galerkin at 7.7. The

theory suggests that the Galerkin should asymptote near 4.5 and the nonlinear

Galerkin near 7.5. • , Gelerkin; •, FMT.
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E, := max I1 (0- (=.(t) + R.,_,(z,.(t)))H L, < c2e-"' .-+,
o<t<l.s ),7/4

"'m-t-1

for some al > O. Since )_m+l = (m + 1) 4, we have

log = + 1)+ log( ,

and
--7/4

logE, = -al(rn + 1) + log(c2Am+ 1 ).

Thus, a log-linear plot of the error versus the number of modes should be nearly

linear. This is confirmed in Figure 4. In fact, the two lines are parallel. That is,

they have the same exponential rate of convergence (same al ). In addition, notice

that the nonlinear Galerkin method still exhibits an algebraic improvement over the

standard Galerkin. This is manifested by the fact that the graph for the nonlinear

Galerkin is below the graph for the Galerkin.

Similar considerations apply where the compatibility of the solutions with the

basis functions is an issue. Let us recall how this can come about. Consider Burgers'

equation forced on the boundary

Ou O2u Ou

Ot Ox 2 + U-_x= O, (13)

u(0, t) = 1 u(1,t) = O.

To formulate this problem in the same setting as Equation (3), one can set v =

u - (1 - x) to obtain

Ov O2v

Ot Ox 2

Ov Ov

+ + (1 - --v= l-x,

v(O,t)=O v(1,t)=O.

To apply the nonlinear Galerkin method, we must first expand the forcing term,

here f = 1 - x, in terms of the eigenfunctions of the linear dissipative operator

_j(x) = sin(jrx). We find

_-_4 sin(jTrx).f=l-x= ---:

j=l 7r3

It is easily seen that, in terms of the spectral method based on the eigenfunctions

of the Laplacian, the forcing term is only L2((0, 1)), (a = 0). We therefore expect

the nonlinear Galerkin method to be significantly more accurate in this case.
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FIGURE 3. L 2 norm of "exact" solution vs. time for the KS equation with zero

forcing with initial data on an unstable manifold.
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FIGURE 4. Log of the errorxl013 vs. the number of modes for the KS equation

with zero forcing. Notice that the rate of convergence of both schemes is exponential.
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3. Future plans

The goal remains to understand what aspects of the long time behavior of infinite-

dimensional PDEs are retained by their finite-dimensional approximations. Perhaps

the ultimate test of an approximation will remain how well it predicts nature. How-

ever, there are a growing number of applications where one does not know a priori

nor is there a way to test experimentally the behavior of some systems. Therefore,

assuming the dynamics of the PDEs accurately reflects the physical phenomenon it

is meant to depict, we hope understanding the behavior of approximating schemes

of these PDEs will prove valuable in the future.
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